‎On the two-wavelet localization operators on homogeneous spaces with relatively invariant measures

نویسندگان

  • Fatemeh Esmaeelzadeh Department of Mathematics‎, ‎Bojnourd Branch‎, ‎Islamic Azad University‎, ‎Bojnourd‎, ‎Iran
  • Rajab Ali Kamyabi-Gol Department of Mathematics‎, ‎Center of Excellency in Analysis on Algebraic Structures(CEAAS)‎, ‎Ferdowsi University Of Mashhad‎, Iran
چکیده مقاله:

In ‎the present ‎paper, ‎we ‎introduce the ‎two-wavelet ‎localization ‎operator ‎for ‎the square ‎integrable ‎representation ‎of a‎ ‎homogeneous space‎ with respect to a relatively invariant measure. ‎We show that it is a bounded linear operator. We investigate ‎some ‎properties ‎of the ‎two-wavelet ‎localization ‎operator ‎and ‎show ‎that ‎it ‎is a‎ ‎compact ‎operator ‎and is ‎contained ‎in‎ a Schatten $p$-class‎.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Localization operators on homogeneous spaces

Let $G$ be a locally compact group, $H$ be a compact subgroup of $G$ and $varpi$ be a representation of the homogeneous space $G/H$ on a Hilbert space $mathcal H$. For $psi in L^p(G/H), 1leq p leqinfty$, and an admissible wavelet $zeta$ for $varpi$, we define the localization operator $L_{psi,zeta} $ on $mathcal H$ and we show that it is a bounded operator. Moreover, we prove that the localizat...

متن کامل

localization operators on homogeneous spaces

let $g$ be a locally compact group, $h$ be a compact subgroup of $g$ and $varpi$ be a representation of the homogeneous space $g/h$ on a hilbert space $mathcal h$. for $psi in l^p(g/h), 1leq p leqinfty$, and an admissible wavelet $zeta$ for $varpi$, we define the localization operator $l_{psi,zeta} $ on $mathcal h$ and we show that it is a bounded operator. moreover, we prove that the localizat...

متن کامل

Invariant Differential Operators on Nonreductive Homogeneous Spaces

A systematic exposition is given of the theory of invariant differential operators on a not necessarily reductive homogeneous space. This exposition is modelled on Helgason’s treatment of the general reductive case and the special nonreductive case of the space of horocycles. As a final application the differential operators on (not a priori reductive) isotropic pseudo-Riemannian spaces are cha...

متن کامل

A Class of compact operators on homogeneous spaces

Let  $varpi$ be a representation of the homogeneous space $G/H$, where $G$ be a locally compact group and  $H$ be a compact subgroup of $G$. For  an admissible wavelet $zeta$ for $varpi$  and $psi in L^p(G/H), 1leq p <infty$, we determine a class of bounded  compact operators  which are related to continuous wavelet transforms on homogeneous spaces and they are called localization operators.

متن کامل

On the Commutativity of the Algebra of Invariant Differential Operators on Certain Nilpotent Homogeneous Spaces

Let G be a simply connected connected real nilpotent Lie group with Lie algebra g, H a connected closed subgroup of G with Lie algebra h and β ∈ h∗ satisfying β([h, h]) = {0}. Let χβ be the unitary character of H with differential 2 √ −1πβ at the origin. Let τ ≡ IndHχβ be the unitary representation of G induced from the character χβ of H. We consider the algebra D(G,H, β) of differential operat...

متن کامل

On the Continuous Wavelet Transform on Homogeneous Spaces

F. ESMAEELZADEH∗,‡, R. A. KAMYABI GOL†,§ and R. RAISI TOUSI∗,¶ ∗Department of Pure Mathematics, Ferdowsi University of Mashhad P. O. Box 1159-91775, Mashhad, Iran †Department of Pure Mathematics, Ferdowsi University of Mashhad and Center of Excellence in Analysis on Algebraic Structures (CEAAS) P. O. Box 1159-91775, Mashhad, Iran ‡[email protected] §[email protected] ¶raisi...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 4  شماره 2

صفحات  1- 12

تاریخ انتشار 2017-12-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023